PKS

Pivotal Container Service

This week at VMworld US, a couple of guys in suits and Sam Ramji VMware, Pivotal, and Google introduced Pivotal Container Service. Exciting stuff! But what does it mean?

Applications on modern platforms run in containers. And while containers themselves are increasingly standardized around the Open Container Initiative (OCI), there are huge differences in how platforms build and run these containerized workloads. This is a direct reflection of the intended platform use cases and corresponding design choices.

Cloud Foundry takes an application centric approach: developers push the source code of their app, and the platform will build a container and run it. As a dev you never have to deal with the creation and orchestration of the container – they are platform intrinsincs which can be tweaked by the Operations team. So in CF everything is focussed on developer productivity and DevOps enablement: an ideal platform for reliable and fast modern software development.

Other use cases do exist in which you do want to bring your own container (BYOC) e.g.: containerized legacy apps, applications already containerized by ISVs, stateful apps and databases, or cases in which dev teams already build containers as part of their build process. Although I would recommend those dev teams in the last example to check out Cloud Foundry, they are all valid use cases – use cases best served by a container centric platform.

Kubernetes is such a container centric platform. In fact, it’s the most mature and battletested platform out there, as the open source spin-off of Google’s internal container platform. However, it’s also notoriously hard to deploy and manage right. Google Cloud Platform introduced the managed Google Container Engine (GKE) to solve this problem in the public cloud.

Pivotal Container Service (PKS) is the answer for the private cloud. Pivotal solved the problem of deploying and managing distributed systems some years ago with BOSH – an infrastructure as code tool for deploying (day 1) and managing (day 2) distributed systems. Not coincidentally BOSH is the foundation and secret ingredient of Cloud Foundry.

PKS is Kubernetes on BOSH (Kubo), with tons of extras to make it enterprise friendly:

  • deep integration with VMware tooling on vSphere (vRealize Operations, Orchestrator, Automation)
  • integration with VMware NSX virtual networking
  • access to Google Cloud APIs from everywhere through a GCP Service Broker
  • production ready – enterprise scaled
  • supported

Be prepared for Q4 availability! In the mean time I can’t wait for beta access to test drive it myself.

Devops, Docker & All other IT buzzwords – what’s in it for me?

Earlier this year, together with Martijn Baecke and Jan-Willem Lammers (both VMware), I presented a fireside chat for the Dutch VMUG UserCon – the largest worldwide with attendance of 1000+.

The idea was to step beyond the hype and technology and see what new developments really have to offer for the business and IT.

We did this with a roleplay of the IT stakeholders of HypotheticalCorp: ‘dev’ (me), ‘ops’ (Martijn), and ‘business’ (Jan-Willem)
NLVMUG2016Talk

Jan-Willem freshly shaven and suited up after his ‘DevOps’ talk with beard in the morning:
NLVMUG2016Beards

Check out the talk below (in Dutch):

vRO API Explorer

It’s been 5 months since we released the first version of the vCenter Orchestrator API Explorer. Because people seem happy with it (we see a steady stream of feedback and returning users), we continue to improve the tool.

Over the last couple of weeks we’ve worked on:

  • performance improvements – it’s even faster now
  • move to .NET Core 1.0.0 (it was still running RC1)
  • documentation links in the vCenter API objects now link directly to the relevant VMware documentation

Please let us know if you are missing plugins, or would like certain features.

DevOps stage at VMworld

VMworld 2015: beyond virtualization

What do you base your selection on when buying some piece of technology? Is it the core functionality, or the added features?

As Kit Colbert aptly stated in his VMworld DevOps program Keynote, customers at this point implicitly assume the core functionality of almost any given product will be alright, and base their choices on the extras:

  • when selecting a new home audio set, you select it based on for instance connectivity, wireless options and easy of use. Actual audio quality is perhaps the #10 item on the list
  • a lot of companies make decent tractors, but some (e.g. John Deere) set themselves apart and do great by adding integrated options such as support for GPS (driving in straight lines)
  • the hypervisor used for virtualization was once the unique selling point, where people now buy virtualization suites based on supporting functionalities, e.g.: High Availability, virtualized layer 2 networking (NSX), Dynamic Resource Scheduling

Smart existing companies have recognized this trend of commoditization of the core functionality, which results in a huge drive from the business to add more extra value fast while staying safe and reliable, all in order to stay competitive with the army of disruptive startups coming for (a piece of) the cake.

Developers have been used to working with the short iteration cycles intrinsic to Agile development for years now, since apart from adding value to the business quickly it has the additional benefits of risk reduction and adaptability:

Agile value proposition

Agile value proposition

However, this mode of operation is asking a lot from traditional IT departments as historically IT operations is focused on reliability of infrastructure: a characteristic seemingly best served by no changes ever – diametrically opposed to adding new features on a daily basis.

This has given rise to the waterscrumfall phenomenon: new features developed with short iteration cycles (scrum/agile) will still have to wait for the biannual release weekend to hit production (waterfall), thereby eliminating most of the advantages gained by adopting agile methods in development.

It goes without saying waterscrumfall is not a desirable situation to be in, and therefore people have been experimenting with the logical extension to Agile development to the whole pipeline: the DevOps movement.

DevOps

DevOps has perhaps over 9000 alternative definitions. The most important thing to note though, is that DevOps is a mix of culture, process and supporting technology. You can’t buy DevOps, and you can’t implement it.

Adopting DevOps requires a permanent push towards a different mindset which enables you to bring changes to production fast, at scale and in a reliable way. There are however some technologies that can help you enforce and enable DevOps principles. It’s here were the most exciting developments took place at VMworld 2015.

Overview of the VMware Cloud Native stack

Overview of the VMware Cloud Native stack

Unified platform: vSphere integrated containers

Interaction between Operations and Development runs most smoothly if Developers don’t have to file tickets for virtual machines, but instead use an API to request some compute resources to run their code. This is where containers come in: originally devised as an Operating System (OS) level virtualization technology, their main popularity these days is not the result of OS overprovisioning capabilities but rather of their ability to serve as shipping vehicles for code enabling reproducible deployment.

The output of a Continuous Integration (CI) process is known as a build artifact. Where usually this is a .war/binary/.zip file, the more modern approaches use containers. Ideally, the next stage of the process – Continuous Deployment (CD) – would subsequently push the container to a container engine (e.g.: Docker) which can schedule it. vSphere integrated containers allow this exact mechanism which nicely seperates Operations and Development concerns:

  • Ops can define special resource pools – Virtual container hosts (VCH) – to keep tabs on the resources available to containerized workloads
  • vSphere exposes a Docker Engine API, which Devs can use to schedule container workloads to a VCH. When a container is scheduled, a Virtual Machine (VM) is forked (instant cloned) to run this workload
vSphere integrated containers

vSphere integrated containers

Note that since the container is running on a VM in a 1:1 relation, the VM is not important here. It just provides the isolation and scheduling features to the container: the first class citizen of the data center – from the perspective of the developer – is the container itself. At the same time, because of the 1:1 mapping, Ops can monitor and manage the just enough VM (jeVM) in the same ways they would legacy workloads.

Continuous Delivery: vRealize Code Stream

Most development teams have some kind of Continuous Integration set up by now, which generates automated builds on a clean system, tests the build and stores the build artifact. The next phase which is pushing the artifact to test, user acceptance test, and ultimately production is not usually done in an automated way in the traditional enterprise environment as this phase requires Ops cooperation to set up – and as described above – this is where traditionally 2 worlds collide.

However, reproducible and therefore automated deployment is essential if you want to work with fast as well as safe pushing of new features into production. Therefore, companies today can only survive the onslaught of disruptive newcomers if they set up some sort of Continuous Delivery practice.

This is where vRealize Code Stream comes in: when a build artifact in the form of a container is output from the Continuous Integration phase of the pipeline, vRealize Code Stream pulls it in and takes care of the Continuous Delivery part in an automated way based on (user defined) rules, checks and tests.

vRealize Code Stream Continous Delivery Automation

vRealize Code Stream Continous Delivery Automation

Integration with cloud native platforms: Photon platform

Scheduling a container directly on vSphere using integrated containers is a great start, but it will not be the typical use case for new applications in production environments. Problems such as scaling, scheduling, dynamic routing and load balancing are universal and so unless you want to reinvent the wheel (a very common developer pastime), it’s much more convenient to use a cloud native application platform to deploy applications. Platforms such as Kubernetes, mesos, docker swarm and Pivotal Cloud Foundry take care of the scheduling, scaling and dynamic routing automatically.

Photon Platform architecture

Photon Platform architecture

At VMworld, VMware announced the missing link for landing cloud native platforms on vSphere – Photon platform – a multi tenant control plane for provisioning next generation (cloud native) application platforms.

Integrated containers or Photon platform?

Integrated containers vs. Photon platform

Integrated containers vs. Photon platform

Cloud native architecture is the future, but applications need to be designed to be cloud native (12 factors), and most existing applications are just not ready. So basically it comes down to this:

  • cloud native applications ⇒ cloud native platform using Photon platform
  • ‘legacy’ applications ⇒ vSphere, with packaging as container if possible

Note that for large applications, it doesn’t have to be one or the other: realistic migrations of existing applications will likely keep a core monolithic/legacy part hosted on the traditional platform, with new extensions or refactored bits – for which a business case can be made – as cloud native applications.

Pivotal Cloud Foundry partnership

Pivotal Cloud Foundry (PCF) is just one of the cloud platforms that can be provisioned on vSphere with Photon controller, so why special attention for PCF? From the VMware perspective this seems obvious: VMware owns Pivotal Software, sure they like to see them do well, there’s $$$ in it.

However, from the impartial enterprise perspective there is a very good case to make for PCF as well:

  • it’s the only platform that has support for enterprise concepts like organisations, projects, spaces, user management
  • it’s the only platform which strongly drives home the distinction between platform operations (managing and monitoring the cloud platform itself) and application operations (managing and monitoring the apps)
  • it’s a structured/opinionated platform which enforces DevOps principles – as opposed to unstructured (more freedom a.k.a. more chaos/management hell) platforms such as Kubernetes and mesos
Pivotal: enabling DevOps

Pivotal: enabling DevOps

Ergo: it’s the only platform right now that’s good enough for general purpose enterprise production use, and it’s the only platform that ‘just works’ on vSphere.

VMware and the commoditization of virtualization

Technology aside, VMworld 2015 was interesting because VMware is in somewhat of a bind: the hypervisor – once the sole reason for buying VMware – has become a commodity. The reason for choosing vSphere is nowadays the management, monitoring and automation suite around it. However, disruptive newcomers are using DevOps and cloud native architectures, and coming from a development background myself, I can see why they are the future, and I was sure there are enough intelligent people at VMware to recognize this as well.

So VMware had to move, and after following the DevOps and cloud native tracks and talking to Kit Colbert privately it became very obvious they are in fact moving.

However, VMware has a strong customer base in Ops in organizations which aren’t known for their aptitude to change; perhaps the willingness to change technology is there, but real change is needed especially on the culture and process fronts in order to keep up.

So it’s pretty clear: VMware realizes exactly what needs to happen, the difficulty is in determining the right pace for change: if they go too fast they alienate their current customer base, and if they go to slow they become legacy themselves. A real balancing act, but the proposition is strong.